Ethanol from Cane Molasses

Jayant Godbole

PRAJ INDUSTRIES LTD.

PUNE, INDIA

DOE+BBI Hawaii Ethanol Workshop, November 14, 2002 Honolulu, Hawaii.

PRAJ	PRAJ - Background	
•	Over 250 customers around the world.	
•	Over 60 distilleries attached to sugar mills.	
•	Fermentation process using cane molasses, syrup of sugarcane juice or mixture, grains, cassava etc.	
•	Has mapped molasses characteristics by analyzing more than 1500 cane molasses samples across the world.	
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu	

PRAJ - Infrastructure & Strengths

Established knowledge based company with expertise in Fermentation, Distillation and in value added options for vinasse treatment & disposal.

MATRIX - Technology Development Center with Analytical Laboratory & Pilot Plant Facilities.

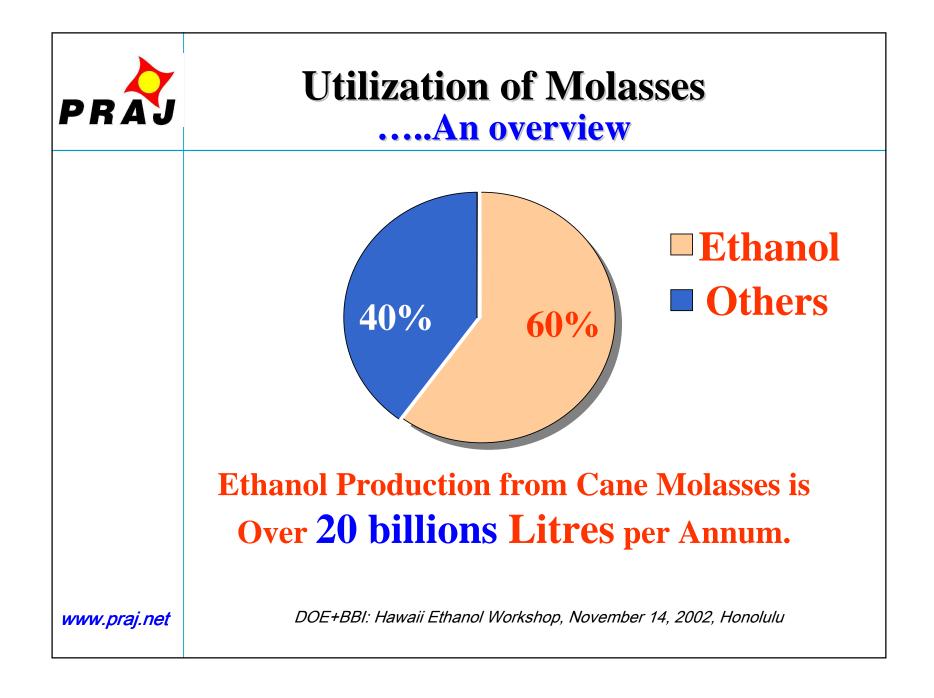
Central Technology and Engineering Facility with over 200 Experts for Design, Engineering, Project Management, Manufacture, Installation & Commissioning of Alcohol Plants.

Manufacturing facility for stainless steel, copper titanium etc.with ISO 9002 and ASME-U & H.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Ethanol from Cane Molasses



PRAJ - Customers

- Seagram India.
- Allied Domeque.
- PT Molindo Raya, Indonesia.
- La Tondena, Philippines.
- Destilerias Unidas, Peru.
- Sucromiles, Colombia
- Destileria Brugal, Dominican Republic.
- West Indies Rum, Barbados.
- Thai Alcohol Company.
- ➤ McDowell & Company.
- > Shaw Wallace.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Availability of Molasses

- Tropical Climatic Conditions Influence Many Technical Aspects of Molasses to Ethanol Fermentation.
- Majority of Molasses to Ethanol Plants are Concentrated in Tropical & Sub-tropical Regions.
- India has more than 200 distilleries using cane molasses. Other major producers od ethanol from cane molasses are Thailand, Indonesia, Philippines, Brazil, Guatemala, Mexico etc.

www.praj.net

PRAJ	Factors Affecting Composition of Molasses		
	>Variety of cane		
	>Composition of soil		
	>Climatic conditions		
	>Harvesting practices >Sugar manufacturing process		
	>Handling and storage		
www.praj.net	DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu		

PRAJ

Typical Composition of Molasses

• Total Solids : 75 to 88 % Wt.

• Total reducing sugars : 44 to 60 % Wt.

• Unfermentable Sugars : 4 to 5 % Wt.

• Fermentable Sugars : 40 to 55 % Wt.

•Total Inorganics : 8 to 12 % Wt.

• Settlable dry sludge : < 3.5% Wt.

• Specific Gravity : 1.38 to 1.52

• Titrable volatile acidity: 3000-20,000 ppm

• pH at 40 deg. Diluion : 4.5 to 5.6

• Caramel(OD) : 0.2 to 0.6

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Mapping Characteristics of Cane Molasses

	Analytical Parameter	SOUTH AMERICA	AFRICA	SOUTH EAST ASIA	CARRABIAN
Α	Chemical Analysis				
1	Brix (Degree Brix) At ambient temp.	87- 93	83 - 91	78 - 85	84 - 93
2	Total Solids (% w/w)	81 - 86	82 - 85	78 - 85	74 - 79
3	Total sugars as reducing matter (% w/w)	49 - 54	48 - 55	50 - 60	52 - 56
4	Un-fermentable sugars as reducing matter (% w/w)	2.5 - 5.2	2.3-5.4	3.7-4.9	3.5 - 4.5
5	Fermentable sugars (% w/w)	43.5 - 50	43- 49.5	45 - 60	47.5 -52
6	F:N Ratio	1.0 - 1.6	1.0 - 1.5	1.2 - 2.8	1.7- 2.8
7	Total inorganic matter (% w/w)	7.8 - 14	6.5 - 8.5	4 - 5	9 - 12
8	Calcium as CaO (% w/w)	1.3 - 3.9	2 - 3	1.9 - 2.5	1.8 - 2.6
9	Total Settlable dry sludge at pH 4.5 and 40 Brix dilution (% w/w of raw molasses)	0.7- 4.5	0.5 - 3.0	0.5 -1.0	1 - 1.5
10	Total settlable sludge at pH 4.5 – 4 Hr settling (by Vol. %)	15 - 26	5 - 20	1- 6	0 - 12
11	Specific Gravity(at ambient temperature)	1.46 - 1.50	1.43 - 1.51	1.40 - 1.45	1.44 - 1.49
12	Titrable volatile acidity in terms of acetic acid and acetate salts (PPM)	5500 - 22500 Average 12000	6500-12500	5500-11500	4000 - 5500
13	PH at 40 Brix dilution	5-5.5	4.8-5.5	4.6-5.3	4.8 - 5.4
14	Dry suspended particles (> 100 μ) (% w/w)	ND	ND	ND	ND
15	Colour in terms of optical density (OD) at 375 nm with 0.1 % w/v dilution.	0.2- 0.32	0.3 - 0.49	0.2 - 0.55	0.35 - 0.4
B.	Microbiological Analysis		•	•	•
1	Total Viable count cfu/gm	100 – 20000	100-600	3000-40000	1000-4000
C Ins	strumental (GC) analysis of Individual Fr			ducts of bacterial	metabolism).
1	Acetic Acid (PPM)	4000-22000	2000-3000	5000-7000	4000-5000
2	Propionic Acid (PPM)	30-250	30-50	80-90	35-40
3	Isobutyric acid (PPM)	300-600	10-20	40-60	20-40
4	Butyric acid (PPM)	100-220	60-70	40-60	300-355
5	Isovaleric acid (PPM)	10-50	200-230	100-114	400-430
6	Valeric acid (PPM)	10-40	5-10	5-10	5-10
7	Total Acids by GC (PPM)	4450- 23200	2300-3400	5300- 7350	4700- 5900

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

General observations about Cane Molasses

- South American molasses is generally high in fermentable sugars, high in calcium, inorganic ash and volatile acidity.
- Caribbean molasses is normal in calcium and volatile acidity & high in fermentable sugars.
- Molasses in Central America has moderate fermentables, medium VA & high in caramel
- African molasses is high in fermentable sugar low calcium & sludge content and normal VA.
- South East Asian molasses is high in fermentable sugars, high volatile acidity & higher in caramel.
- ➤ Molasses in northern & southern India has low fermentable sugars, higher VA & caramel.

www.praj.net

Fermentation of Molasses to Ethanol

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

What is Fermentation?

Fermentation of Sugar.

Fermentable sugar gets converted in to ethanol with yeast as catalyst.

Reaction:

Di-saccharide -----> Mono-saccharide

Mono-saccharide ----> Ethanol + CO₂ Yeast

www.praj.net

Factors in Molasses Influencing Fermentation

> Fermentable Sugars

Yeast uses fermentable sugar for ethanol production.

> Inorganic Salts

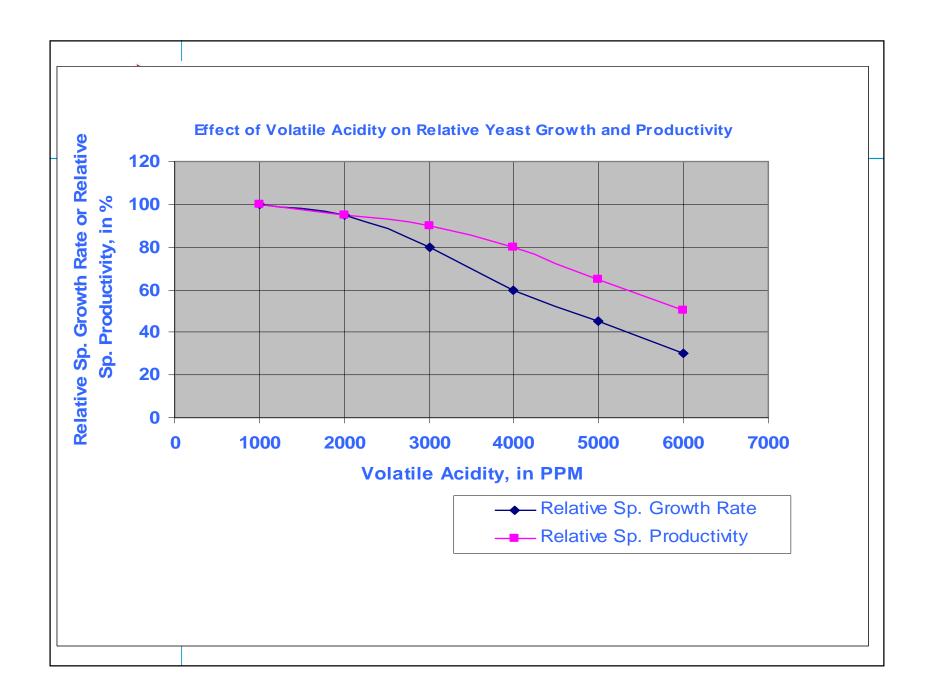
Salts inhibits yeast activity due to Osmotic pressure.

Volatile Acidity ➤ Volatile Acidity

Volatile acids reduce yeast growth and ethanol formation.

> Hygienic Conditions

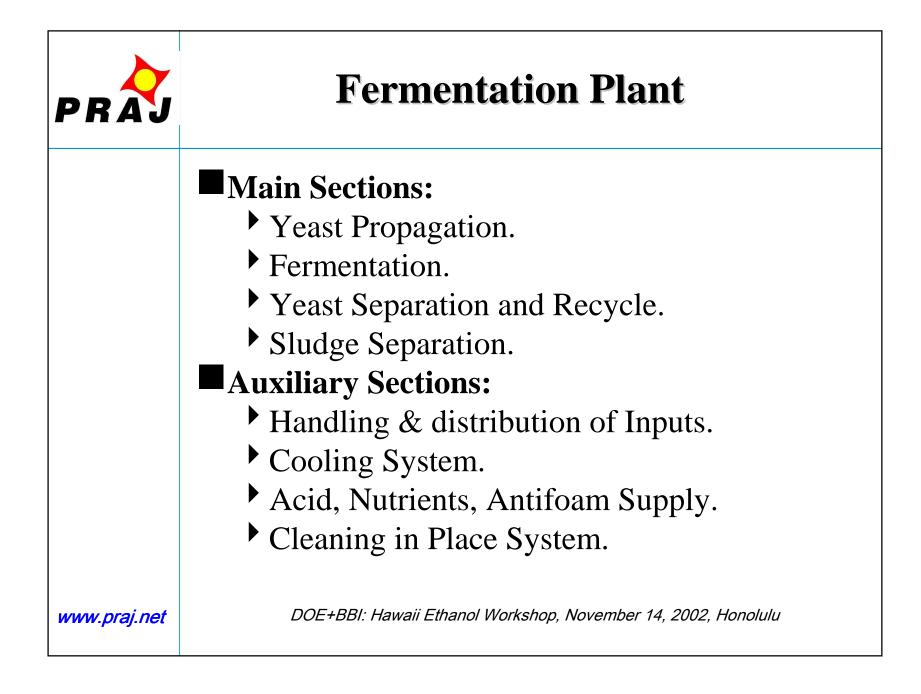
Hygienic condition controls contamination.


www.praj.net

Composition of Molasses & Effects on Fermentation Kinetics

- >F:N ratio < 0.9 retards fermentation rate by average 15 - 20 %
- Ash content above 10 % can retard the rate of
- fermentation by 5 10 %. Extent of caramelization: (Measured as color in OD units at 375 nm of 0.1 % molasses solution)> 0.40 OD retards fermentation rate by 20-25%. Reaction ceases beyond 0.65.
- \triangleright Volatile acids in mash > 2500 ppm reduce the rate of fermentation and yeast growth. Volatile acids in mash > 5000 ppm reduce fermentation rate by 30 - 40 %. Volatile acids in mash > 7000 ppm can kill the yeast reducing viability up to 40-50 %.

www.praj.net

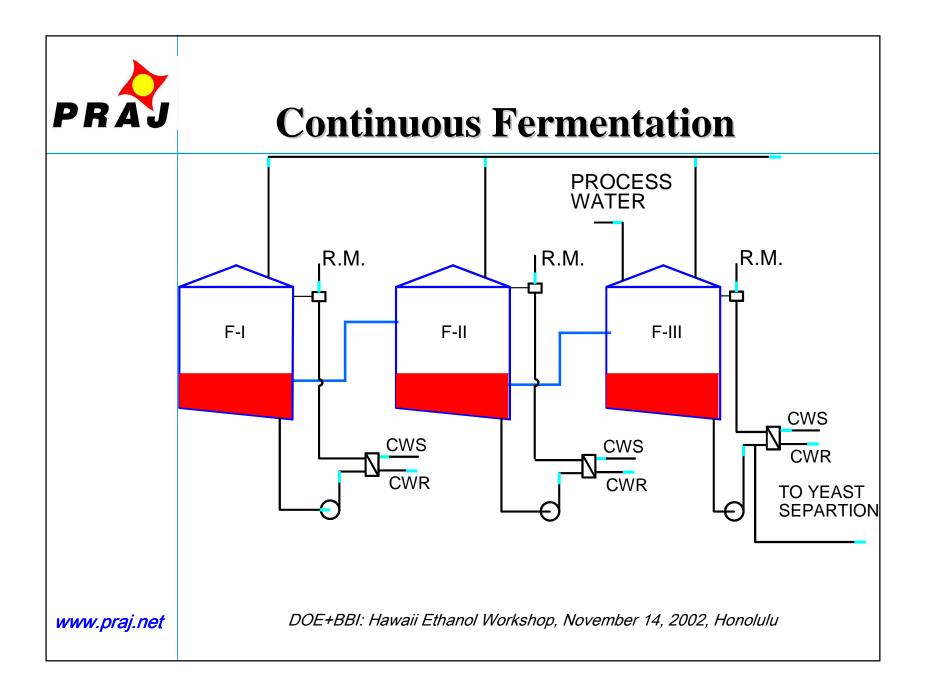


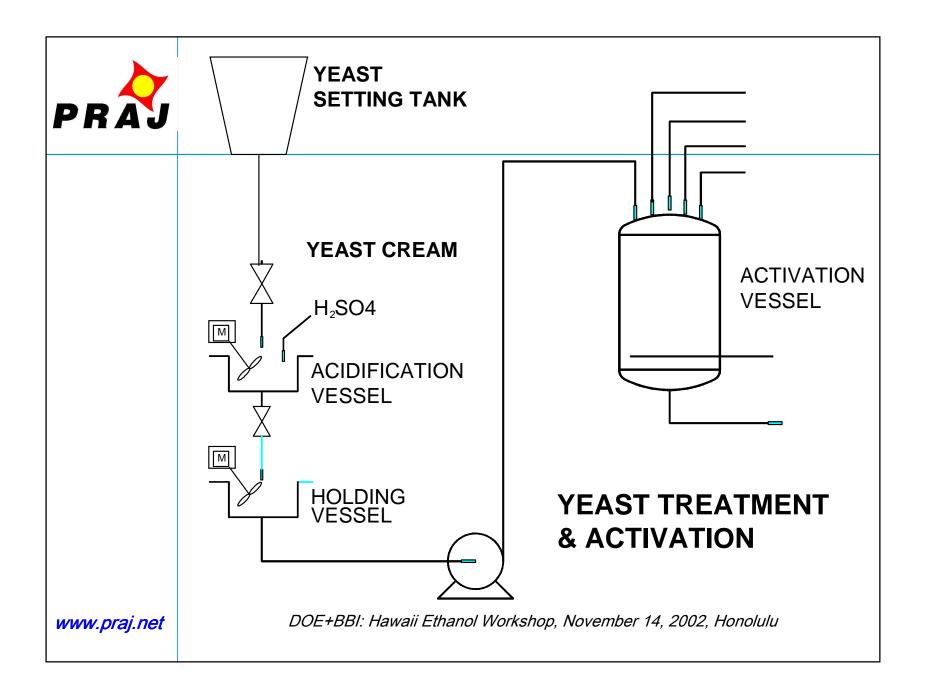
Parameters For Fermentation

- Alcohol concentration in Mash.
- ▶ Sugar & Yeast Concentration in Mash.
- Temperature & pH of Mash.
- Volatile acidity in Mash.
- Residence Time In Fermentors.
- Fermentation Efficiency.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

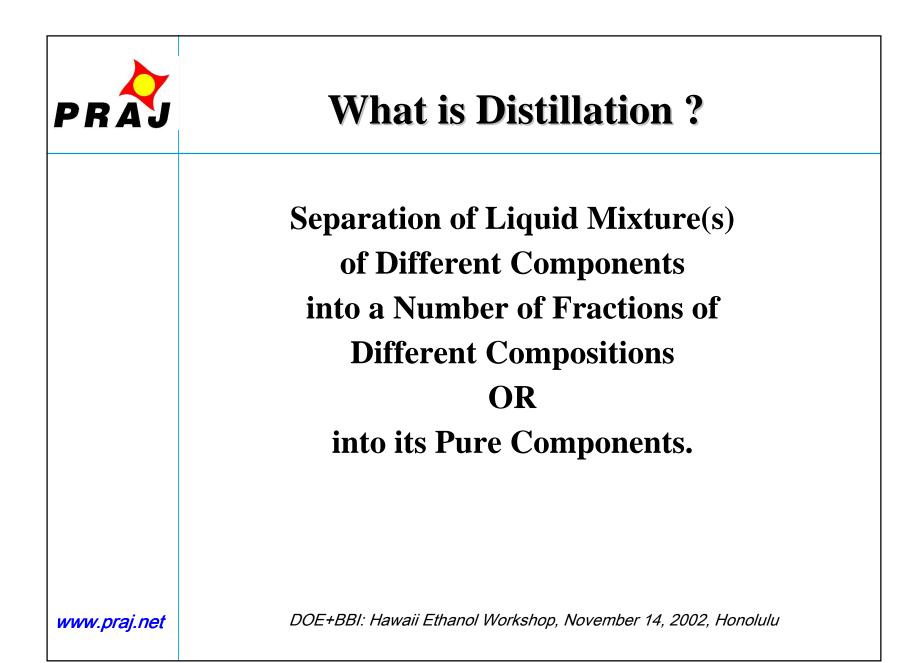

Continuous Fermentation....


- More than 100 distilleries in Asia & India use continuous fermentation on cane molasses.
- Easier to operate with 2-4 fermentors, consistent quality & no need to propagate yeast daily.
- ➤ Higher efficiency of 89-90 % instead of 80-84 % in a batch process.
- Alcohol yield of 270-274 Lit of 99.5 % v/v Ethanol/ MT molasses with 48 % Fermentable Sugars (64-65 gallon/short ton).
- ➤ Alcohol concentration increases from 5-6 % in the 1st fermentor to 8-9.5 % in the last one.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Ethanol from Cane Molasses



Ethanol Distillation

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Objective of Distillation

- Stripping of alcohol from Fermented Mash.
- Concentration of stripped alcohol to 95 96.5% v/v for industrial alcohol & further concentration to 99.5 99.8% v/v in dehydration plant for ethanol.
- Concentration of stripped Ethanol to 96 96.5 %v/v for Potable application. Separation of impurities become prime importance. Achieved by controlling-
 - Dilution & Extraction
 - Temperature.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Parameters for Distillation.

- Number of distillation columns depend on required product composition.
- ➤ Selection of parameters like pressure & temperature
- Energy conservation by *Heat Recovery, Thermal Integration.*
- > Automation for consistency in quality.
- ➤ Plant Design to Take Care Fouling Nature of Mash.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

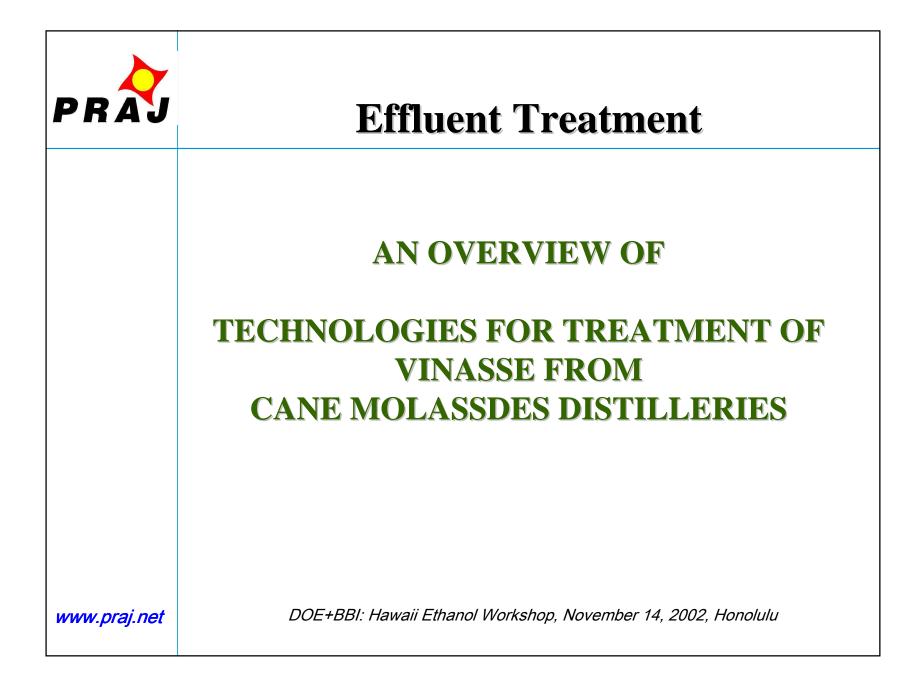
Distillation Scheme Selection

- Energy cost being a significant potion of operating cost, configuration is designed to minimize energy.
- Use of re-boilers to minimize volume of effluent.
- Using cascading pressure for integration of heat & saving in energy.
- ➤ Automation to get consistent quality product.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Ethanol from Cane Molasses



Multi-pressure Vacuum Distillation

- ➤ Lower consumption of steam
- Multi-pressure vacuum configuration eliminates problems of scaling in mash column
- Consistently high quality of product
- ➤ Higher degree of instrumentation and automation

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Characteristics of Effluent

Effluent generated by molasses based distilleries has following characteristics:

Volume: 9 to 12 KL per KL of alcohol produced.

B.O.D.: 40,000 to 60,000 mg./ lit or ppm.

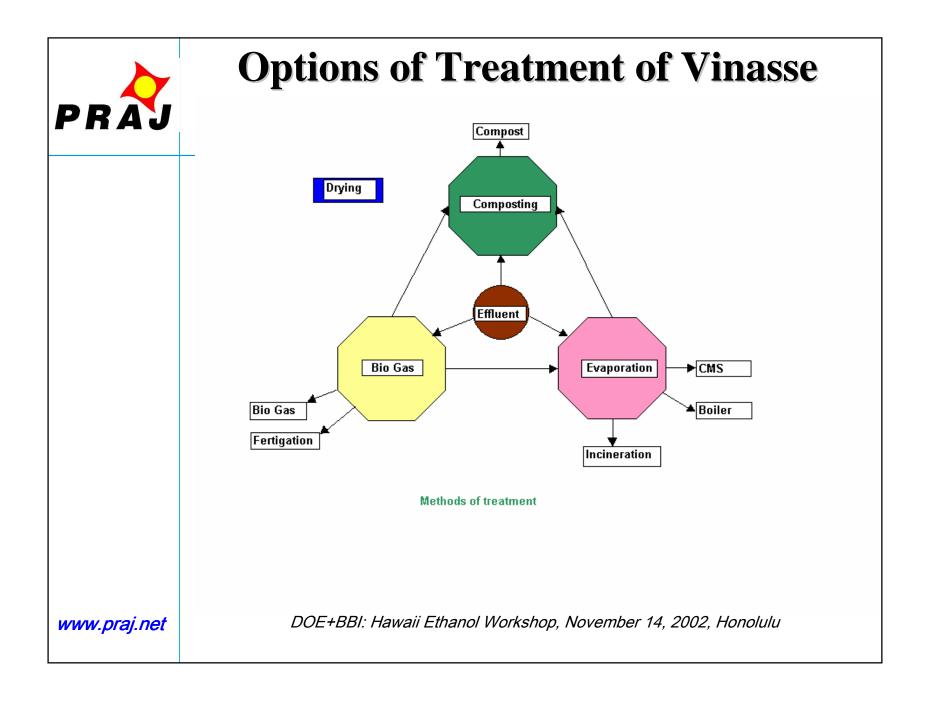
<u>C.O.D.</u>: 80,000 to 120,000 mg./lit or ppm.

Total solids: 7 to 12 % w/w.

Organic solids: 4 to 8 % w/w

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu


Objective For Effluent Treatment

- >To ensure safe treatment of the organic part of the effluent
- To ensure safe and proper disposal of the treated effluent.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Ethanol from Cane Molasses

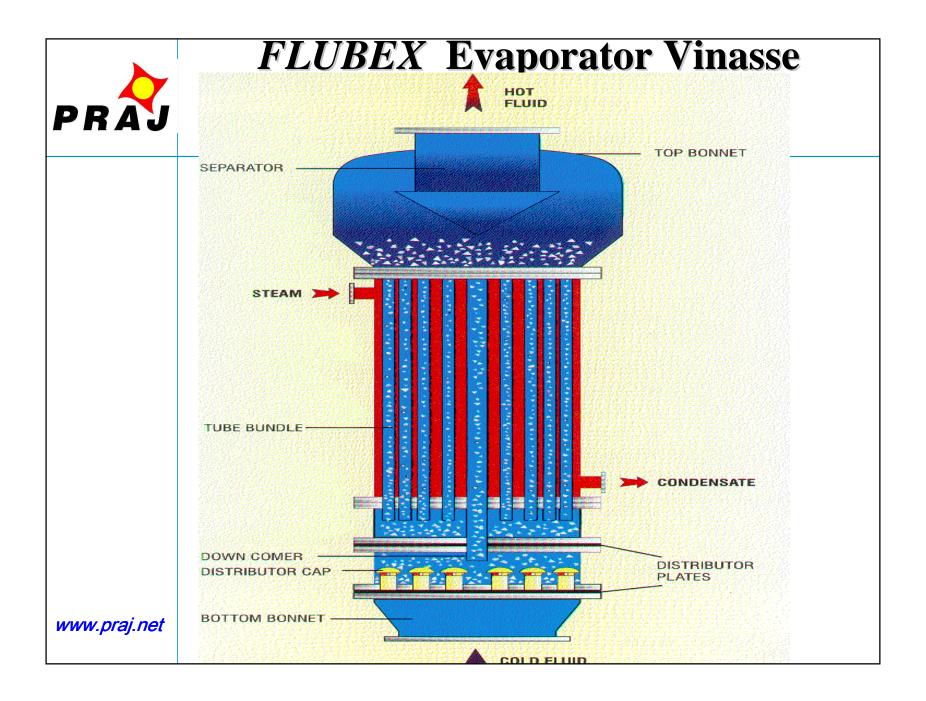
PR	AJ

Options / Schemes

- Anaerobic Bio-Methanation followed by aerobic, activated sludge treatment: almost 80 % of the energy requirement can be derived from vinasse.
- Aerobic, Biological Composting.
- Concentration and usage in Animal Feed (CMS).
- Concentration and Incineration, with and without Steam Generation.
- Ferti Irrigation with bio-methanated or with partially evaporated vinasse.
- Disposal in water bodies like river, lake or sea.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu


	>
PR	AJ

Recycle of Vinasse

- When using cane molasses or juice syrup, up to 50 % of vinasse can be recycled.
- ➤ Vinasse gets concentrated to 25-30 % solids.
- Careful process design required to avoid excessive build-up of bacterial contamination.
- Aspects like content of calcium & inorganic ash and content of bacteria & volatile acids need to be considered carefully.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

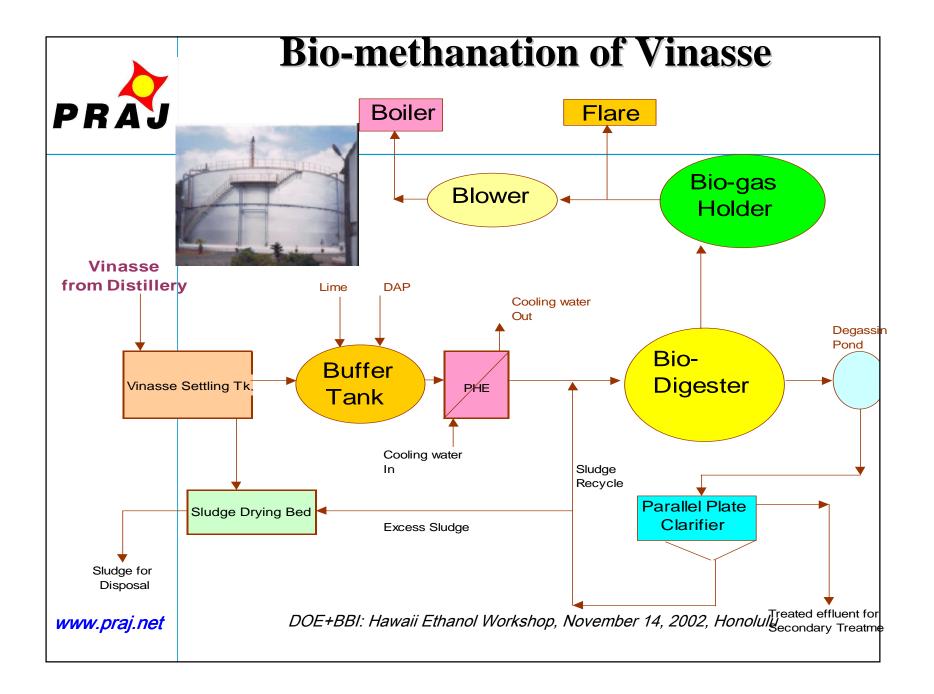
Evaporation of Vinasse - *'FLUBEX'*

- Deposition and scaling in falling film evaporators due to presence of calcium salts in vinasse is the major problem in evaporation of vinasse.
- Self-cleaning fluidized bed *FLUBEX* evaporators of PRAJ employs metal wire-bits which get fluidized in the exchanger and gently scour the tube-walls
- > FLUBEX enables use of vinasse evaporator for a longer duration of 30-90 days without cleaning.

www.praj.net


Integration of *FLUBEX* Evaporator with Distillation

- Evaporation of Mash before distillation to produce high wine
- ➤ Vinasse gets concentrated to 50 % solids
- Use of vapors from Rectifier column under high pressure to heat the evaporator
- ➤ Steam consumption of < 3.7 kg/lit (31 lb/gallon) of alcohol for evaporation + distillation
- System eliminates use of Mash column and thus avoids related problems of scaling.


www.praj.net

FLUBEX Mash/Vinasse Evaporator

www.praj.net

Aerobic Open Wind-Row Bio-Composting of Vinasse

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Conclusions

- Appropriate technologies at affordable project investment are available for production of ethanol from cane molasses.
- Valuable energy and organic soil conditioner compost can be produced by treatment of vinasse.
- Variable cost of production will is between US Cents 75-95/gallon, depending upon factors like cost of molasses, technology used and the choice of vinasse treatment.

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu

Ethanol from Cane Molasses

Thanks Indeed!

www.praj.net

DOE+BBI: Hawaii Ethanol Workshop, November 14, 2002, Honolulu